logo
ส่งข้อความ
foshan nanhai ruixin glass co., ltd
อ้างอิง
เกี่ยวกับเรา
พาร์ทเนอร์มืออาชีพและน่าเชื่อถือของคุณ
โฟชาน นานไฮ รูอิกซินกล๊าส คอม จํากัด ก่อตั้งเมื่อปี 2013 ตั้งอยู่ที่โฟชาน มีประสบการณ์มากกว่า 10 ปีในด้านกระจกหมัด เราให้ผลิตภัณฑ์และบริการที่มีคุณภาพดีเรามีการรับรองนานาชาติ: CCC,CE, SGCC และ SAI เรามีโรงงานสาขา 5 แห่ง มีผลิตภัณฑ์ต่าง ๆหนึ่งผลิตกระจกห้องน้ํา หนึ่งผลิตกระจก หนึ่งผลิตผลิตภัณฑ์มวลชน หนึ่งผลิตกระจกศิลปะตกแต่ง และหนึ่งผลิตกระจกอาคารขนาดใหญ่ โรงงานของเรานํามาอุปกรณ์และเทคโนโลยีการแข็งแกร่งที่ทันสมัย ผลิตกระจกหมึก 600,000 ตารางเมตรทุกเดือนมีความเชี่ยวชาญในการผลิตแก้วห้องน้ําเราสามารถผ...
เรียนรู้ เพิ่มเติม

0

ปีที่ตั้ง:

0

ล้าน+
พนักงาน

0

ล้าน+
บริการ ลูกค้า

0

ล้าน+
ยอดขายประจำปี:
จีน foshan nanhai ruixin glass co., ltd คุณภาพสูง
พิมพ์ความไว้วางใจ ตรวจสอบเครดิต RoSH และการประเมินความสามารถของผู้จําหน่าย บริษัทมีระบบควบคุมคุณภาพอย่างเข้มงวด และห้องทดสอบมืออาชีพ
จีน foshan nanhai ruixin glass co., ltd การพัฒนา
ทีมงานออกแบบเชี่ยวชาญภายใน และโรงงานเครื่องจักรที่ทันสมัย เราสามารถร่วมมือกัน เพื่อพัฒนาสินค้าที่คุณต้องการ
จีน foshan nanhai ruixin glass co., ltd การผลิต
เครื่องจักรอัตโนมัติที่ทันสมัย ระบบควบคุมกระบวนการอย่างเข้มงวด เราสามารถผลิตเทอร์มินัลไฟฟ้าได้มากกว่าที่คุณต้องการ
จีน foshan nanhai ruixin glass co., ltd บริการ 100%
ขนของจํานวนมากและบรรจุของขนาดเล็กตามความต้องการ FOB, CIF, DDU และ DDP ขอให้เราช่วยคุณหาทางแก้ปัญหาที่ดีที่สุด

คุณภาพ กระจกนิรภัยอาคาร & กระจกกระชับน้ํา ผู้ผลิต

ค้นหาสินค้าที่ตอบสนองความต้องการของคุณได้ดีกว่า
กรณีและข่าว
จุดร้อน ล่าสุด
Understanding the Difference Between Fire-Resistant Glass and Tempered Glass from the Production Process
Understanding the Difference Between Fire-Resistant Glass and Tempered Glass from the Production Process In daily life, we often hear about Fire-Resistant Glass and Tempered Glass. Both are widely used in the construction field due to their excellent safety properties. However, although both contain the word "glass" and offer higher strength than ordinary glass, their core functions, performance indicators, and production processes are vastly different. Viewing from the perspective of the production process provides the clearest insight into their fundamental differences. In short, the core process of Tempered Glass is "quenching," aimed at increasing the mechanical strength of the glass; whereas the core process of Fire-Resistant Glass is "compositing and processing," designed to endow the glass with fire insulation and resistance functions.   I. The Divergence of Core Objectives: Strength Safety vs. Fire Safety Before delving into the production lines, we must clarify the fundamental purposes for which each is manufactured. Tempered Glass: Pursuing Physical Strength and Personal Safety. Its main goal is to solve the problems of ordinary glass being fragile and producing sharp, injury-causing fragments. Through physical or chemical methods, strong compressive stress is formed on the glass surface, making its impact and bending resistance several times that of ordinary glass. Even when broken by significant external impact, it shatters into small granules without sharp edges, greatly reducing the risk of injury. Therefore, its keywords are "strength" and "safety glass." Fire-Resistant Glass: Blocking Flames and Heat Transfer, Buying Escape Time. Its primary function is to effectively block the spread of flames and the transfer of high heat for a certain period during a fire, buying precious time for evacuation and firefighting. It must not only maintain integrity (not break), but higher grades of Fire-Resistant Glass must also possess excellent thermal insulation properties to prevent a rapid temperature rise on the non-fire side that could ignite other materials. Therefore, its keywords are "fire resistance integrity" and "fire resistance insulation." The objective determines the path. These two fundamentally different functional demands lead directly to completely different production process routes.   II. The Production Process of Tempered Glass: Physical Tempering, Strengthening the Body The production of Tempered Glass is a typical "whole-body strengthening" process. The mainstream method is physical tempering (air quenching), which is relatively standardized. The process can be summarized as "cutting -> edging -> washing -> heating -> quenching -> inspection." Raw Sheet Preparation: Using qualified ordinary float glass as the base, it is precisely cut and edged according to order dimensions to ensure smooth, defect-free edges, as any tiny crack can cause the entire sheet to shatter during tempering. Heating Stage: The cleaned glass sheet is fed into a continuous heating furnace (tempering furnace), where it is uniformly heated to near its softening point (approximately 650-700°C). At this point, the glass is in a plastic state, red-hot and nearly molten. Quenching Stage (Core Process): This is the soul of the entire process. The radiantly hot glass is rapidly transferred from the furnace and immediately subjected to uniform, rapid cooling on both sides by multiple sets of high-pressure, high-volume air jets. The glass surface solidifies and contracts rapidly due to quick cooling, while the interior remains hot and cools and contracts slower. Stress Formation: When the interior eventually cools and contracts, it is pulled by the already solidified surface. Ultimately, tensile stress forms inside the glass, while powerful compressive stress forms on the surface. This stress distribution is like putting a "tight armor" on the glass, significantly increasing its load-bearing capacity and impact resistance. Inspection and Shipping: After cooling, the glass undergoes inspections such as stress pattern checks and fragmentation tests. Once qualified, it is ready for shipment. The production of Tempered Glass can be seen as "training" the single glass body. Through the tempering of heat and cold, it is "transformed," gaining a robust "physique." III. The Production Process of Fire-Resistant Glass: Composite Processing, Infusing Function The production of Fire-Resistant Glass is a "system integration" process. Its technology is complex and varied, with the core lying in endowing the glass with fire-resistant and insulating functions through special structures and materials. Based on different principles, it is mainly divided into Laminated Fire-Resistant Glass (insulating) and Monolithic Fire-Resistant Glass (non-insulating or partially insulating).   1. Laminated Fire-Resistant Glass (Using Dry Method as an example, pursuing insulating integrity) This is the type with the highest technical content and the most comprehensive fire performance. Its production process is like making a "sandwich." Multi-layer Structure Preparation: It consists of at least two or more layers of glass sheets. These sheets are often themselves made of Tempered Glass to enhance their mechanical strength. This is an important connection point between the two: high-grade Fire-Resistant Glass often uses Tempered Glass as the base substrate. Injecting Fire-Resistant Interlayer: A transparent, intumescent fire-resistant interlayer is injected between the multiple glass layers. This interlayer is hard and transparent at room temperature, not affecting light transmission. Laminating and Curing: Specific processes are used to ensure the interlayer fills uniformly and cures, firmly bonding the multiple glass layers together. Fire Resistance Mechanism: During a fire, the fire-exposed glass pane shatters (safely, as it is tempered), and the intermediate fire-resistant interlayer rapidly expands and foams upon heating, forming a thick, opaque white foam insulation layer. This layer effectively blocks the passage of flames and high temperatures to the non-fire side, while maintaining the overall integrity of the assembly, thus achieving fire resistance insulation for durations like 60 minutes, 90 minutes, or even longer. 2. Monolithic Fire-Resistant Glass (Pursuing integrity, limited insulation) This glass is a single component. Its production is more like "deep processing" of special glass. Special Glass Substrate: Special glass types with low thermal expansion coefficients, such as borosilicate glass (much higher heat resistance than ordinary soda-lime glass) or ceramic glass, are used as the base material. Physical Tempering Treatment: These special glass substrates undergo the Tempered Glass production process to give them higher strength, enabling them to withstand thermal stress shocks and external impacts during a fire. Fire Resistance Mechanism: In a fire, due to its inherent high thermal stability, it is less prone to softening, deformation, or bursting upon heating, maintaining integrity for a considerable time, thus acting as a flame barrier. However, its insulating effect is poor, as the temperature on the non-fire side rises relatively quickly. Therefore, it is typically classified as "Class C" non-insulating fire-resistant glass, or may achieve limited insulation ratings by increasing thickness. Thus, the production of Fire-Resistant Glass is a complex process of material selection and system integration, centered around "functional materials (fire-resistant interlayer or special glass) + structural design."   IV. Performance and Application Comparison Resulting from Process Differences The fundamental differences in production processes directly determine their final destinies and uses. Strength and Safety: Tempered Glass, due to its surface compressive stress, has a mechanical strength 3-5 times that of ordinary glass and breaks into safe small granules. Monolithic fire-resistant glass and laminated types using tempered substrates also possess high strength, but their core value lies elsewhere. Thermal Stability: Although Tempered Glass undergoes high-temperature processing, its composition is still that of ordinary glass. When subjected to uneven heating or temperatures exceeding approximately 300°C, its internal stress balance can be disrupted, risking spontaneous breakage, and it will break quickly in a fire. Fire-Resistant Glass (especially laminated) is designed specifically to withstand extreme temperatures and remain stable. Application Scenarios: Tempered Glass is widely used in building windows, doors, curtain walls, interior partitions, furniture, shower enclosures, and all other applications requiring high strength and personal safety protection. It is the most basic safety glass in modern construction. Fire-Resistant Glass is specifically used in areas requiring fire compartmentation, such as fire doors and windows, fire partitions, protected corridors, stairwell enclosures, etc. It is a "firewall" that ensures life safety. V. Conclusion Looking back at the production processes, we can clearly see: The path of Tempered Glass is "thermomechanical strengthening of a single material," building a powerful compressive stress system within the glass itself through rapid quenching. The product is homogeneous, high-strength safety glass. The path of Fire-Resistant Glass is "functional compositing of multiple materials," constructing a system capable of resisting flames and high temperatures by introducing key functional materials like fire-resistant interlayers or special glasses. The product is a composite, functional fire-resistant assembly. In a nutshell, Tempered Glass is "stronger glass," while Fire-Resistant Glass is "a system that can resist fire." Understanding this difference, originating from the very source of production, is crucial for selecting the correct and appropriate glass products in architectural design, effectively ensuring building and personal safety. Often, the two are not opposites but work synergistically – Tempered Glass serves as the substrate, providing the basic strength guarantee for Fire-Resistant Glass, together building a sturdy and reliable barrier for life safety.

2025

09/26

The Timeless Art of Stained Glass: From Cathedral Windows to Modern Masterpieces
The Timeless Art of Stained Glass: From Cathedral Windows to Modern Masterpieces Introduction: The Transformation of Glass Glass has long been perceived as a fragile and transparent material, limited by its tendency to break into sharp, dangerous fragments. However, technological advancements have revolutionized this ancient material, enabling us to enhance its natural advantages while addressing its inherent weaknesses. This transformation is particularly evident in the evolution of church glass and stained glass, where traditional craftsmanship meets modern innovation to create breathtaking works of art that transcend their practical function.   Historical Development of Church Glass Church glass, commonly known as cathedral glass, has a rich history dating back to medieval Europe. Originally developed for religious structures, this specialized form of art glass served both practical and symbolic purposes. The innovative use of colored glass in ecclesiastical architecture transformed how light interacted with sacred spaces, creating ethereal atmospheres that enhanced spiritual experiences. During the Gothic period, church glass reached unprecedented levels of sophistication. Architectural breakthroughs enabled the creation of vast windows that served as "Bibles for the illiterate," conveying religious narratives through vibrant visual storytelling. The famous rose windows of Chartres Cathedral and Notre-Dame de Paris exemplify the technical mastery and artistic achievement of this era, where stained glass became an integral component of architectural design and religious expression. Technical Specifications of Traditional Church Glass Traditional church glass possesses unique characteristics that distinguish it from conventional glass:   Material Composition Base material: Soda-lime-silica glass Coloring agents: Metallic oxides (cobalt for blue, gold for red, copper for green) Texture: Hand-blown variations creating light-diffusing properties Thickness: Ranging from 3-6mm with intentional irregularities Optical Properties Light transmission: Selective wavelength filtration Diffusion characteristics: Unique light-scattering patterns Color saturation: Deep, rich hues achieved through metallic integration Durability: Exceptional resistance to fading and environmental degradation The Art and Science of Stained Glass Production Traditional Manufacturing Process Design Phase The creation of stained glass begins with comprehensive design development: Cartoon preparation: Full-scale drawings detailing every element Color mapping: Strategic planning of color placement and transitions Structural analysis: Engineering considerations for support and stability Lighting studies: Analysis of how natural and artificial light will interact with the design Glass Selection and Preparation Master artisans employ specialized techniques: Material selection: Choosing glass based on color intensity, texture, and optical properties Cutting process: Using diamond tools for precision shaping Edge refinement: Grinding and smoothing each piece to exact specifications Quality control: Inspecting for imperfections and consistency Painting and Firing Techniques The artistic process involves multiple specialized stages: Glass painting: Using vitreous enamels containing ground glass and metal oxides Layering techniques: Building up colors through successive firings Firing process: Heating in kilns at temperatures between 600-650°C Quality assurance: Checking color development and adhesion after each firing Assembly and Installation Final construction requires meticulous attention to detail: Lead came construction: Using H-shaped lead channels to join glass pieces Soldering techniques: Creating strong, weather-resistant joints Weatherproofing: Applying putty and sealants for protection Structural support: Installing reinforcement systems for large installations   Modern Technological Innovations Contemporary stained glass production incorporates advanced technologies:   Digital Manufacturing CAD design: Computer-aided design for precision planning CNC cutting: Computer-controlled glass cutting for complex shapes Digital printing: High-resolution image transfer onto glass surfaces Laser etching: Precise surface texturing and detailing Material Advancements Laminated safety glass: Impact-resistant constructions UV-protective coatings: Fade-resistant surface treatments Self-cleaning surfaces: Titanium dioxide coatings for maintenance reduction Smart glass technologies: Electrochromic and thermochromic properties Applications and Contemporary Uses   Religious Institutions Modern church glass continues to enhance sacred spaces: Traditional restoration: Preserving historical windows using authentic techniques Contemporary designs: Integrating modern aesthetics with traditional craftsmanship Interfaith applications: Creating inclusive spiritual environments Memorial windows: Commemorating significant events and individuals Secular Applications Stained glass has expanded beyond religious contexts: Architectural features: Enhancing public and commercial buildings Residential design: Creating unique interior and exterior elements Public art installations: Large-scale community projects Functional art: Incorporating stained glass into furniture and lighting Conservation and Preservation Techniques Preventive Conservation Environmental monitoring: Controlling temperature, humidity, and light exposure Protective glazing: Installing secondary layers for weather protection Regular maintenance: Establishing systematic cleaning and inspection schedules Documentation: Comprehensive recording of condition and treatments Restoration Methodologies Historical research: Investigating original techniques and materials Minimal intervention: Preserving original material whenever possible Reversible treatments: Using materials that can be removed without damage Traditional craftsmanship: Employing time-tested techniques for authenticity Technical Challenges and Solutions Structural Considerations Wind load calculations: Engineering for environmental stresses Thermal expansion: Accommodating temperature-related movement Seismic requirements: Designing for earthquake resistance Weight distribution: Managing heavy installations in existing structures   Material Compatibility Chemical stability: Ensuring long-term material compatibility Color matching: Maintaining consistency in restoration work Adhesive development: Creating reversible, durable bonding agents Protective coatings: Developing UV-resistant, breathable protective layers   Future Developments and Innovations Technological Integration Nanotechnology: Developing self-healing surface treatments Energy generation: Incorporating photovoltaic elements Interactive features: Integrating responsive lighting systems Digital augmentation: Combining physical and digital visual elements Conclusion: The Enduring Legacy of Glass Art The evolution of church glass and stained glass represents a remarkable convergence of artistic vision and technical innovation. From medieval cathedrals to contemporary architecture, these art glass forms continue to captivate and inspire, demonstrating the endless possibilities of glass as an artistic medium. The future of stained glass promises continued innovation through the integration of traditional craftsmanship with cutting-edge technology. As we advance, the fundamental qualities that have made church glass enduringly popular—its ability to transform light, create emotional impact, and connect us to tradition—will continue to guide its evolution, ensuring that this ancient art form remains vital and relevant for generations to come. This comprehensive exploration demonstrates how stained glass has maintained its artistic significance while adapting to changing technologies and applications, truly embodying the perfect marriage of art and science that continues to push the boundaries of what is possible with this remarkable material.

2025

09/17

Is a Glass Dining Table or Coffee Table Good? How to Maintain It? A Guide to Tempered Glass Selection and Care.
Is a Glass Dining Table or Coffee Table Good? How to Maintain It? A Guide to Tempered Glass Selection and Care. 1. In-Depth Analysis: Comprehensive Evaluation of Tempered Glass as a Surface for Dining and Coffee Tables 1.1 Exceptional Safety: The Preferred Choice Over Ordinary Glass The primary advantage of tempered glass for furniture surfaces lies in its outstanding safety. When ordinary glass breaks, it shatters into sharp, irregular fragments that can easily cause injuries. In contrast, tempered glass undergoes a heat treatment process that creates strong compressive stress on its surface, making it 3–5 times mechanically stronger than ordinary glass. When subjected to extreme force, it does not break into sharp shards but instead fractures into countless small, blunt-grained particles in a "cobweb" pattern, significantly reducing the risk of cuts. This feature provides a crucial safety barrier for households with children or elderly members, offering peace of mind when using a glass dining table.   1.2 Unrivaled Ease of Cleaning and Stain Resistance From a daily maintenance perspective, tempered glass coffee table surfaces perform exceptionally well. Their dense, smooth, and non-porous surface prevents oil stains, water marks, coffee spills, food residues, and other contaminants from penetrating. Most everyday stains can be easily wiped away with a slightly damp soft cloth, restoring the surface to its pristine condition almost instantly. In comparison, solid wood tabletops require caution against water damage and scratches, while natural stone surfaces like marble have inherent pores that make them prone to staining and require immediate drying after cleaning, along with periodic sealing maintenance. For households pursuing an efficient and convenient modern lifestyle, a sleek glass dining table saves considerable cleaning time and keeps the dining area tidy and fresh.   1.3 Transparent Aesthetic Value and Spatial Expansion Effect The innate transparency of glass is unmatched by other materials. A tempered glass dining table or coffee table, whether reflecting soft light under natural sunlight or showcasing a crystal-clear texture under artificial lighting, instantly enhances the brightness and modernity of a space. It reduces the visual bulk of furniture, preventing crowding and oppression in small living rooms or dining areas, creating an "unbroken" transparent view that effectively enhances the sense of openness. Whether paired with metal legs for an industrial style or combined with a wooden base for a warm modern feel, a glass tabletop seamlessly integrates, becoming a stunning focal point in the space.   1.4 Objectively Addressing Potential Drawbacks and Usage Considerations Of course, tempered glass is not without its limitations. Understanding these drawbacks objectively helps us use and maintain it better. Fragility at Edges and Corners: Although the overall strength of a tempered glass tabletop is high, its edges and corners are mechanical weak points. If struck violently and precisely by a hard object (e.g., a heavy object falling corner-first), the edges may shatter. Therefore, avoid hitting the table corners with hard objects. Proneness to Visible Marks: The smooth surface also means it is more likely to show fingerprints, water spots, and dust, requiring more frequent wiping to maintain its optimal appearance. Touch and Noise: Compared to wood, a glass surface is typically colder and harder, and placing utensils on it may produce louder noises. Using placemats, tablecloths, or table runners is recommended to improve tactile comfort and reduce noise. 2. The Science of Maintenance: A Comprehensive Guide to Extending the Lifespan of Glass Dining and Coffee Tables Proper maintenance methods not only preserve the appearance of a glass dining table but also ensure its long-term safe use. Below is a systematic maintenance plan. 2.1 Daily Cleaning and Upkeep: Consistent Simple Steps Basic Cleaning: After daily meals or use, it is advisable to wipe the surface with a soft microfiber cloth or sponge dampened with warm water. Microfiber cloths effectively adsorb dust without scratching the surface. After wiping, it is best to immediately dry the surface with a dry cloth to prevent water stains, which is the most critical habit for keeping glass perpetually shiny. Stubborn Stain Treatment: For dried stains, sticky substances, or grease, avoid scraping with hard or sharp objects. Instead, apply a soft cloth soaked in warm soapy water to the stain, let it sit for a moment to soften, and then wipe gently. For particularly stubborn stains, a soft cloth dipped in a small amount of 75% concentration alcohol or white vinegar can be used for removal. These solvents are effective cleaners, evaporate quickly, and leave no residue. Important Taboos: Strictly avoid using any cleaners containing strong acids (e.g., hydrochloric acid, hydrofluoric acid), strong alkalis (e.g., high-concentration caustic soda), or abrasive particles (e.g., scouring powder, steel wool). Since the main chemical component of glass is silicon dioxide, it reacts with strong acids and alkalis, causing permanent surface corrosion, loss of gloss, and even destabilizing the tempered layer.   2.2 Deep Cleaning and Special Treatments: Addressing Different Situations Cleaning Patterned Glass (e.g., Frosted Glass, Embossed Glass): Cleaning textured surfaces like frosted or embossed glass may require more than standard wiping. A soft-bristled toothbrush dipped in a neutral cleaner solution can be used to gently scrub in circles along the pattern, effectively removing dirt without damaging the glass. Another traditional and effective method is to apply a paste made from plaster powder or chalk dust mixed with water to the glass. Once dry, wipe it off with a soft dry cloth. The plaster powder will carry away all deeply embedded stains, restoring the glass's cleanliness and aesthetic appeal. Limescale Treatment: If the household water is hard, white limescale may appear on the surface over time. A mixture of equal parts white vinegar and water can be sprayed onto the limescale, left for a few minutes, and then wiped off with a damp cloth. Finally, rinse with clean water and dry thoroughly. 2.3 Protective Measures During Use: Prevention Is Key Stable Placement: Glass furniture should be placed on a stable, fixed surface, and frequent dragging or moving should be avoided. If movement is necessary, always lift rather than push or pull to prevent scratches or breakage due to uneven stress on the base. Using Protective Pads: This is the most effective way to protect coffee table surfaces and dining tables. When placing items like vases, decorative ornaments, or laptops on the table, it is recommended to use soft coasters, leather pads, or silicone pads underneath. This not only prevents hard objects from directly scratching the glass surface but also reduces noise when placing items. Using Tablecloths or Table Runners: For frequently used dining tables, consider placing a tablecloth or table runner that matches the home's style. This effectively protects the entire table surface from scratches and stains while softening the cold feel of the glass and adding a cozy atmosphere to the home. When selecting, ensure the tablecloth has a non-slip backing or is made of soft material. 2.4 Regular Inspections and Long-Term Maintenance It is recommended to inspect the supporting structure of the dining table or coffee table every six months to ensure the legs, brackets, and other connections are secure and not loose. An unstable support structure can cause uneven stress on the tabletop, increasing the risk of spontaneous breakage in tempered glass (though the probability is very low). Additionally, check the edges of the tabletop for minor chips to identify potential issues early. In summary, tempered glass, with its high safety, ease of cleaning, and outstanding aesthetic appeal, is an excellent choice for dining table and coffee table surfaces. As long as its characteristics are understood and maintained through scientific cleaning methods, daily careful protection, and regular detailed inspections, your glass dining table and coffee table will remain crystal clear, sturdy, and safe for a long time, becoming both practical and dazzling focal points in your comfortable home life.

2025

09/16